Skip to content

Model Generation Configuration

In generation, we need to create the generate action corresponding to the selected trained Rockfish model with its configuration.

Basic Configuration Setup

Model Generate Configuration Generate Action
RF-Time-GAN generate_config = ra.GenerateTimeGAN.Config(doppelganger=ra.GenerateTimeGAN.DGConfig()) generate = ra.GenerateTimeGAN(generate_config)
RF-Time-Transformer generate_config = ra.GenerateTimeTransformer.Config() generate = ra.GenerateTimeTransformer(generate_config)
RF-Tab-GAN generate_config = ra.GenerateTabGAN.Config(tabular_gan=ra.GenerateTabGAN.GenerateConfig()) generate = ra.GenerateTabGAN(generate_config)
RF-Tab-Transformer generate_config = ra.GenerateTabTransformer.Config() generate = ra.GenerateTabTransformer(generate_config)

The generation configuration uses default parameter values if not specified.

Available Parameters

Model Parameters Description Default Value Guidelines
RF-Time-GAN given_metadata A dict to specify metadata values for conditional generation. If the dict is None, generate all possible metadata values. None Users can provide given_metadata in a dict - keys to indicate field names and values for the values prior to generation
clip_per_sample When True, it ensures only generating in-range values True It is effective when activate_normalization_per_sample = True in training configuration. When activate_normalization_per_sample = False, it by default only generates within range values.
sessions Number of generated sessions None If None, it will generate the min(1000, number of source sessions). To generate more, users need to indicate the number in ra.SessionTarget. It is only used if users want to generate smaller number than the source number.
RF-Time-Transformer sessions Number of sessions to generate. None If None, it will generate the min(1000, number of source sessions). To generate more, users need to indicate the number in ra.SessionTarget. It is only used if users want to generate smaller number than the source number.
RF-Tab-Transformer records Number of records to generate. None If None, it will generate the min(1000, number of source records). To generate more, users need to indicate the number in ra.SessionTarget. It is only used if users want to generate smaller number than the source number.
RF-Tab-GAN clip_in_range When True, enable generated continuous values to be within the range False It clips the out-of-range values by the boundary of training data so that it may affect the numerical columns' distribution due to the spikes around the boundary.
records Number of records to generate. None If None, it will generate the min(23,000, number of source records). To generate more, users need to indicate the number in ra.SessionTarget. It is only used if users want to generate smaller number than the source number.

Usage Examples

You can customize the generation behavior by passing parameters to the configuration objects. Here are some examples:

Note: The sessions and records parameters should only be specified when you want to generate fewer items than the default limit. For generating more than the default, use ra.SessionTarget instead.

For comprehensive information on how to apply the generate action with different use cases, please refer to the Generate Module.

RF-Time-GAN

generate_config = ra.GenerateTimeGAN.Config(
    doppelganger=ra.GenerateTimeGAN.DGConfig(
        given_metadata={'user_type': 'premium'},  # Conditional generation
        clip_per_sample=True,                     # Ensure in-range values
        sessions=500                              # Generate 500 sessions (only when < min(1000, source sessions))
    )
)
generate = ra.GenerateTimeGAN(generate_config)

RF-Time-Transformer

generate_config = ra.GenerateTimeTransformer.Config(
    sessions=200  # Generate 200 sessions (only when < min(1000, source sessions))
)
generate = ra.GenerateTimeTransformer(generate_config)

RF-Tab-GAN

generate_config = ra.GenerateTabGAN.Config(
    tabular_gan=ra.GenerateTabGAN.GenerateConfig(
        clip_in_range=True,  # Clip values to training range
        records=1000         # Generate 1000 records (only when < min(23000, source records))
    )
)
generate = ra.GenerateTabGAN(generate_config)

RF-Tab-Transformer

generate_config = ra.GenerateTabTransformer.Config(
    records=500  # Generate 500 records (only when < min(1000, source records))
)
generate = ra.GenerateTabTransformer(generate_config)